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I.   INTRODUCTION 

Fractional calculus is a branch of mathematical analysis, which studies several different possibilities of defining real order 

or complex order. In the second half of the 20th century, a large number of studies on fractional calculus were published in 

engineering literature. Fractional calculus is widely welcomed and concerned because of its applications in many fields 

such as mechanics, dynamics, control theory, physics, economics, viscoelasticity, electrical engineering, biology, and so on 

[1-11] 

However, fractional calculus is different from ordinary calculus. The definition of fractional derivative is not unique. 

Common definitions include Riemann Liouville (R-L) fractional derivative, Caputo fractional derivative, Grunwald-

Letnikov (G-L) fractional derivative and Jumarie’s modification of R-L fractional derivative [12-16]. Because Jumarie type 

of R-L fractional derivative helps to avoid non-zero fractional derivative of constant function, it is easier to use this 

definition to connect fractional calculus with classical calculus.  

In this paper, based on Jumarie’s modified R-L fractional derivative and a new multiplication of fractional analytic 

functions, we use some methods to evaluate arbitrary order fractional derivative of the following two types of fractional 

functions: 

                                                                                          𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝛼 (
2𝑟

1+𝑟2
𝑐𝑜𝑠𝛼(𝑥

𝛼))
 

, 

and 

                                                                                          𝑎𝑟𝑐𝑡𝑎𝑛𝛼 (
2𝑟

1−𝑟2
𝑠𝑖𝑛𝛼(𝑥

𝛼)), 

where 0 < 𝛼 ≤ 1, 𝑟 is a real number, and |𝑟| < 1. Moreover, our results are generalizations of ordinary calculus results.  

II.   PRELIMINARIES 

At first, we introduce the fractional calculus used in this paper and its properties. 

Definition 2.1 ([17]): Let 0 < 𝛼 ≤ 1, and 𝑥0 be a real number. The Jumarie type of Riemann-Liouville (R-L) 𝛼-fractional 

derivative is defined by 

                                                                          ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼
𝑑𝑡

𝑥

𝑥0
 ,                                                    (1) 
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where Γ( )  is the gamma function. On the other hand, for any positive integer 𝑚 , we define ( 𝐷𝑥0 𝑥
𝛼)
𝑚
[𝑓(𝑥)] =

( 𝐷𝑥0 𝑥
𝛼)( 𝐷𝑥0 𝑥

𝛼) ∙∙∙ ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)], the 𝑚-th order 𝛼-fractional derivative of 𝑓(𝑥). 

Proposition 2.2 ([18]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)

𝛽] =
Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)

𝛽−𝛼,                                               (2) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                                         (3) 

Definition 2.3 ([19]): If 𝑥, 𝑥0, and 𝑎𝑛 are real numbers for all 𝑛, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼 -fractional power series, that is, 𝑓𝛼(𝑥
𝛼) = ∑

𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)

𝑛𝛼∞
𝑛=0  on some open interval 

containing 𝑥0, then we say that 𝑓𝛼(𝑥
𝛼) is 𝛼-fractional analytic at 𝑥0. Furthermore, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed 

interval [𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic 

function on [𝑎, 𝑏]. 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([20]): If 0 < 𝛼 ≤ 1. Assume that 𝑓𝛼(𝑥
𝛼) and 𝑔𝛼(𝑥

𝛼) are two 𝛼-fractional power series at 𝑥 = 𝑥0, 

                                                                            𝑓𝛼(𝑥
𝛼) = ∑

𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)

𝑛𝛼∞
𝑛=0 ,                                                              (4) 

                                                                           𝑔𝛼(𝑥
𝛼) = ∑

𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)

𝑛𝛼∞
𝑛=0 .                                                               (5) 

Then  

                                                                    𝑓𝛼(𝑥
𝛼)⨂𝛼 𝑔𝛼(𝑥

𝛼)  

                                                               = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)

𝑛𝛼∞
𝑛=0 ⨂𝛼 ∑

𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)

𝑛𝛼∞
𝑛=0   

                                                               = ∑
1

Γ(𝑛𝛼+1)
(∑ (

𝑛
𝑚
)𝑎𝑛−𝑚𝑏𝑚

𝑛
𝑚=0 )∞

𝑛=0 (𝑥 − 𝑥0)
𝑛𝛼 .                                                  (6) 

Equivalently, 

                                                         𝑓𝛼(𝑥
𝛼)⨂𝛼 𝑔𝛼(𝑥

𝛼) 

                                                    = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)

𝛼)
⨂𝛼 𝑛∞

𝑛=0 ⨂𝛼 ∑
𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)

𝛼)
⨂𝛼 𝑛∞

𝑛=0   

                                                    = ∑
1

𝑛!
(∑ (

𝑛
𝑚
)𝑎𝑛−𝑚𝑏𝑚

𝑛
𝑚=0 )∞

𝑛=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)

𝛼)
⨂𝛼 𝑛

 .                                                (7) 

Definition 2.5 ([21]): If 0 < α ≤ 1, then the 𝛼-fractional exponential function is defined by 

                                                                     𝐸𝛼(𝑥
𝛼) = ∑

𝑥𝑛𝛼

Γ(𝑛𝛼+1)
= ∑

1

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                            (8) 

And the 𝛼-fractional cosine function and 𝛼-fractional sine function are defined as follows: 

                                                                𝑐𝑜𝑠𝛼(𝑥
𝛼) = ∑

(−1)𝑛𝑥2𝑛𝛼

Γ(2𝑛𝛼+1)
= ∑

(−1)𝑛

(2𝑛)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2𝑛∞
𝑛=0

∞
𝑛=0 ,                                  (9) 

and 

                                                          𝑠𝑖𝑛𝛼(𝑥
𝛼) = ∑

(−1)𝑛𝑥(2𝑛+1)𝛼

Γ((2𝑛+1)𝛼+1)
= ∑

(−1)𝑛

(2𝑛+1)!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (2𝑛+1)∞
𝑛=0

∞
𝑛=0  .                        (10) 

Theorem 2.6 (fractional Euler’s formula)([22]): If 0 < 𝛼 ≤ 1, and 𝑖 = √−1, then 

                                                                                 𝐸𝛼(𝑖𝑥
𝛼) = 𝑐𝑜𝑠𝛼(𝑥

𝛼) + 𝑖𝑠𝑖𝑛𝛼(𝑥
𝛼).                                                        (11) 
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Theorem 2.7 (fractional DeMoivre’s formula)([23]): If 0 < 𝛼 ≤ 1, and 𝑝 is an integer, then 

                                                             [𝑐𝑜𝑠𝛼(𝑥
𝛼) + 𝑖𝑠𝑖𝑛𝛼(𝑥

𝛼)]⨂𝛼 𝑝 = 𝑐𝑜𝑠𝛼(𝑝𝑥
𝛼) + 𝑖𝑠𝑖𝑛𝛼(𝑝𝑥

𝛼).                                      (12) 

Notation 2.8: If the complex number 𝑧 = 𝑝 + 𝑖𝑞, where 𝑝, 𝑞 are real numbers. 𝑝 is the real part of 𝑧, and denoted by Re(𝑧); 

𝑞  is the imaginary part of 𝑧, and denoted by Im(𝑧). 

Definition 2.9 ([24]): The smallest positive real number 𝑇𝛼 such that 𝐸𝛼(𝑖𝑇𝛼) = 1, is called the period of 𝐸𝛼(𝑖𝑥
𝛼). 

III.   MAIN RESULTS 

In this section, based on Jumarie type of R-L fractional derivative and a new multiplication of fractional analytic functions, 

we use some techniques to find arbitrary order fractional derivative of two types of fractional functions. At first, we need 

two lemmas.  

Lemma 3.1:  If  0 < 𝛼 ≤ 1, 𝑟 is a real number, and |𝑟| < 1, then 

                          𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝛼(𝑟𝐸𝛼(𝑖𝑥
𝛼)) =

1

2
𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝛼 (

2𝑟

1+𝑟2
𝑐𝑜𝑠𝛼(𝑥

𝛼)) + 𝑖 ∙
1

2
𝑎𝑟𝑐𝑡𝑎𝑛𝛼 (

2𝑟

1−𝑟2
𝑠𝑖𝑛𝛼(𝑥

𝛼)).                    (13) 

Proof              𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝛼(𝑟𝐸𝛼(𝑖𝑥
𝛼)) 

                    =
1

2
 𝐿𝑛𝛼 ([1 + 𝑟𝐸𝛼(𝑖𝑥

𝛼)]⨂𝛼 [1 − 𝑟𝐸𝛼(𝑖𝑥
𝛼)]⨂𝛼 (−1))  

                    =
1

2
 𝐿𝑛𝛼 ([1 + 𝑟𝑐𝑜𝑠𝛼(𝑥

𝛼) + 𝑖𝑟𝑠𝑖𝑛𝛼(𝑥
𝛼)]⨂𝛼 [1 − 𝑟𝑐𝑜𝑠𝛼(𝑥

𝛼) − 𝑖𝑟𝑠𝑖𝑛𝛼(𝑥
𝛼)]⨂𝛼 (−1))                                   

                    =
1

2
 𝐿𝑛𝛼 (

[1 + 𝑟𝑐𝑜𝑠𝛼(𝑥
𝛼) + 𝑖𝑟𝑠𝑖𝑛𝛼(𝑥

𝛼)]⨂𝛼 [1 − 𝑟𝑐𝑜𝑠𝛼(𝑥
𝛼) + 𝑖𝑟𝑠𝑖𝑛𝛼(𝑥

𝛼)]

⨂𝛼 [1 + 𝑟
2 − 2𝑟𝑐𝑜𝑠𝛼(𝑥

𝛼)]⨂𝛼 (−1)
)                                 

                    =
1

2
 𝐿𝑛𝛼 ([(1 − 𝑟

2) + 𝑖(2𝑟𝑠𝑖𝑛𝛼(𝑥
𝛼))]⨂𝛼 [1 + 𝑟

2 − 2𝑟𝑐𝑜𝑠𝛼(𝑥
𝛼)]⨂𝛼 (−1)) 

                    =
1

2
 𝐿𝑛𝛼

(

 
 
 [(1 − 𝑟2)2 + 4𝑟2(𝑠𝑖𝑛𝛼(𝑥

𝛼))
⨂𝛼 2

]
⨂𝛼 (

1
2
)

⨂𝛼 [1 + 𝑟
2 − 2𝑟𝑐𝑜𝑠𝛼(𝑥

𝛼)]⨂𝛼 (−1)

⨂𝛼 {[(1 − 𝑟
2) + 𝑖(2𝑟𝑠𝑖𝑛𝛼(𝑥

𝛼))]⨂𝛼 [(1 − 𝑟
2)2 + 4𝑟2(𝑠𝑖𝑛𝛼(𝑥

𝛼))
⨂𝛼 2

]
⨂𝛼 (−

1
2
)

}

)

 
 
 

 

                    =
1

4
 𝐿𝑛𝛼 ([1 + 𝑟

2 + 2𝑟𝑐𝑜𝑠𝛼(𝑥
𝛼)]⨂𝛼 [1 + 𝑟

2 − 2𝑟𝑐𝑜𝑠𝛼(𝑥
𝛼)]⨂𝛼 (−1)) 

                     +
1

2
 𝐿𝑛𝛼 ([(1 − 𝑟

2) + 𝑖(2𝑟𝑠𝑖𝑛𝛼(𝑥
𝛼))]⨂𝛼 [(1 − 𝑟

2)2 + 4𝑟2(𝑠𝑖𝑛𝛼(𝑥
𝛼))

⨂𝛼 2
]
⨂𝛼 (−

1
2
)

) 

                   =
1

2
𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝛼 (

2𝑟

1+𝑟2
𝑐𝑜𝑠𝛼(𝑥

𝛼)) + 𝑖 ∙
1

2
𝑎𝑟𝑐𝑡𝑎𝑛𝛼 (

2𝑟

1−𝑟2
𝑠𝑖𝑛𝛼(𝑥

𝛼)).                                                      q.e.d. 

Lemma 3.2:  If  0 < 𝛼 ≤ 1, 𝑟 is a real number, and |𝑟| < 1, then 

                                          𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝛼 (
2𝑟

1+𝑟2
𝑐𝑜𝑠𝛼(𝑥

𝛼)) = 2∑
1

2𝑛+1
𝑟2𝑛+1𝑐𝑜𝑠𝛼((2𝑛 + 1)𝑥

𝛼)∞
𝑛=0 .                           (14) 

And 

                                       𝑎𝑟𝑐𝑡𝑎𝑛𝛼 (
2𝑟

1−𝑟2
𝑠𝑖𝑛𝛼(𝑥

𝛼)) = 2∑
1

2𝑛+1
𝑟2𝑛+1𝑠𝑖𝑛𝛼((2𝑛 + 1)𝑥

𝛼)∞
𝑛=0 .                                 (15) 

Proof                                                                 𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝛼 (
2𝑟

1+𝑟2
𝑐𝑜𝑠𝛼(𝑥

𝛼)) 

                                                                       = 2Re[𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝛼(𝑟𝐸𝛼(𝑖𝑥
𝛼))] 
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                                                                       = 2Re [∑
1

2𝑛+1
(𝑟𝐸𝛼(𝑖𝑥

𝛼))
⨂𝛼 (2𝑛+1)∞

𝑛=0 ]  

                                                                       = 2Re [∑
1

2𝑛+1
𝑟2𝑛+1𝐸𝛼(𝑖(2𝑛 + 1)𝑥

𝛼)∞
𝑛=0 ]  

                                                                       = 2∑
1

2𝑛+1
𝑟2𝑛+1𝑐𝑜𝑠𝛼((2𝑛 + 1)𝑥

𝛼)∞
𝑛=0  . 

And 

                                                                            𝑎𝑟𝑐𝑡𝑎𝑛𝛼 (
2𝑟

1 − 𝑟2
𝑠𝑖𝑛𝛼(𝑥

𝛼)) 

                                                                        = 2Im[𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝛼(𝑟𝐸𝛼(𝑖𝑥
𝛼))] 

                                                                        = 2Im [∑
1

2𝑛+1
(𝑟𝐸𝛼(𝑖𝑥

𝛼))
⨂𝛼 (2𝑛+1)∞

𝑛=0 ]  

                                                                       = 2Im [∑
1

2𝑛+1
𝑟2𝑛+1𝐸𝛼(𝑖(2𝑛 + 1)𝑥

𝛼)∞
𝑛=0 ]  

                                                                       = 2∑
1

2𝑛+1
𝑟2𝑛+1𝑠𝑖𝑛𝛼((2𝑛 + 1)𝑥

𝛼)∞
𝑛=0  .                                          q.e.d. 

Theorem 3.3:  If  0 < 𝛼 ≤ 1, 𝑟 is a real number, |𝑟| < 1, and 𝑚  is any positive integer, then 

                ( 𝐷0 𝑥
𝛼)
𝑚
[𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝛼 (

2𝑟

1+𝑟2
𝑐𝑜𝑠𝛼(𝑥

𝛼))] = 2∑ (2𝑛 + 1)𝑚−1𝑟2𝑛+1𝑐𝑜𝑠𝛼 ((2𝑛 + 1)𝑥
𝛼 +𝑚 ∙

𝑇𝛼

4
)∞

𝑛=0 .            (16) 

And 

                ( 𝐷0 𝑥
𝛼)
𝑚
[𝑎𝑟𝑐𝑡𝑎𝑛𝛼 (

2𝑟

1−𝑟2
𝑠𝑖𝑛𝛼(𝑥

𝛼))] = 2∑ (2𝑛 + 1)𝑚−1𝑟2𝑛+1𝑠𝑖𝑛𝛼 ((2𝑛 + 1)𝑥
𝛼 +𝑚 ∙

𝑇𝛼

4
)∞

𝑛=0 .               (17) 

Proof                                                  ( 𝐷0 𝑥
𝛼)
𝑚
[𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝛼 (

2𝑟

1+𝑟2
𝑐𝑜𝑠𝛼(𝑥

𝛼))] 

                                                        = ( 𝐷0 𝑥
𝛼)
𝑚
[2 ∑

1

2𝑛+1
𝑟2𝑛+1𝑐𝑜𝑠𝛼((2𝑛 + 1)𝑥

𝛼)∞
𝑛=0 ]  

                                                       = 2∑ (2𝑛 + 1)𝑚−1𝑟2𝑛+1𝑐𝑜𝑠𝛼 ((2𝑛 + 1)𝑥
𝛼 +𝑚 ∙

𝑇𝛼

4
)∞

𝑛=0  . 

And 

                                                             ( 𝐷0 𝑥
𝛼)
𝑚
[𝑎𝑟𝑐𝑡𝑎𝑛𝛼 (

2𝑟

1 − 𝑟2
𝑠𝑖𝑛𝛼(𝑥

𝛼))] 

                                                        = ( 𝐷0 𝑥
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[2 ∑

1

2𝑛+1
𝑟2𝑛+1𝑠𝑖𝑛𝛼((2𝑛 + 1)𝑥

𝛼)∞
𝑛=0 ]  

                                                       = 2∑ (2𝑛 + 1)𝑚−1𝑟2𝑛+1𝑠𝑖𝑛𝛼 ((2𝑛 + 1)𝑥
𝛼 +𝑚 ∙

𝑇𝛼

4
)∞

𝑛=0  .                      q.e.d. 

IV.   CONCLUSION 

In this paper, based on Jumarie type of R-L fractional derivative and a new multiplication of fractional analytic functions, 

we use some methods to obtain arbitrary order fractional derivative of two types of fractional functions. In fact, our results 

are generalizations of ordinary calculus results. In the future, we will continue to use our methods to solve problems in 

engineering mathematics and fractional differential equations. 
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